Nanoscale modifications in the early heating stages of bone are heterogeneous at the microstructural scale
نویسندگان
چکیده
Nanoscale studies of bone provide key indicators to evidence subtle structural changes that may occur in the biomedical, forensic and archaeological contexts. One specific problem encountered in all those disciplines, for which the identification of nanostructural cues could prove useful, is to properly monitor the effect of heating on bone tissue. In particular, the mechanisms at work at the onset of heating are still relatively unclear. Using a multiscale approach combining Raman microspectroscopy, transmission electron microscopy (TEM), synchrotron quantitative scanning small-angle X-ray scattering imaging (qsSAXSI) and polarized light (PL) microscopy, we investigate the ultrastructure of cortical bovine bone heated at temperatures < 300°C, from the molecular to the macroscopic scale. We show that, despite limited changes in crystal structure, the mineral nanoparticles increase in thickness and become strongly disorganized upon heating. Furthermore, while the nanostructure in distinct anatomical quadrants appears to be statistically different, our results demonstrate this stems from the tissue histology, i.e. from the high degree of heterogeneity of the microstructure induced by the complex cellular processes involved in bone tissue formation. From this study, we conclude that the analysis of bone samples based on the structure and organization of the mineral nanocrystals requires performing measurements at the histological level, which is an advantageous feature of qsSAXSI. This is a critical aspect that extends to a much broader range of questions relating to nanoscale investigations of bone, which could also be extended to other classes of nanostructured heterogeneous materials.
منابع مشابه
Nanoscale Studies on Aggregation Phenomena in Nanofluids
Understanding the microscopic dispersion and aggregation of nanoparticles at nanoscale media has become an important challenge during the last decades. Nanoscale modeling techniques are the important tools to tackle many of the complex problems faced by engineers and scientists. Making progress in the investigations at nanoscale whether experimentally or computationally has helped understand th...
متن کاملTime-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury
Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...
متن کاملComparison of two integration schemes for a micropolar plasticity model
Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...
متن کاملA T.E.M INVESTIGATION OF THE MECHANISM OF EARLY STAGE ORDERING IN THE INTERMETTALIC COMPOUND PT2FECU
Abstract: The microstructural features of the early stage of ordering of the intermetallic compound Pt2FeCu have been examined using optical and transmission electron microscopy in conjunction with X-ray diffraction technique. It was found that the compound has similar morphological alteration to that of FePt in which the ordering cannot be suppressed by rapid quenching. The early stage of ...
متن کاملPreparation and evaluation of geopolymer composites containing alumina particles at ambient temperature and after heating
In this research, geopolymer composites were prepared using metakaolin along with silica fume and potassium hydroxide as alkaline activators and alumina particles. The effect of alumina particle size to achieve castable microstructure and their mechanical properties were investigated. Different Si:Al mole ratio (1.5, 2, 2.5 and 3) and K:Si mole ratio (0.20, 0.25, 0.33) were formulated and the s...
متن کامل